Google Penalization of AI-Created Content
Google's March 2024 Content Update

Is Google Penalizing AI Content?

And How Does Google Identify AI Content?

Receive SEO Updates

In my previous research and article (Pros and Cons of Using ChatGPT and AI Content for SEO), I delved into Google’s policy adjustments announced in February 2023, where they announced lifting the penalization on AI-generated content.

This development marked a key moment, reshaping the landscape of SEO and content creation. The dialogue around the pros and cons of leveraging ChatGPT and AI for SEO was ignited, promising a new pathway for web creators and marketers such as SEO agencies.

Fast forward to March 2024, and Google has once again steered the digital conversation with its latest algorithmic update. This new adjustment has seen widespread ramifications, penalizing websites across the Internet of Things. For those navigating these turbulent times, Google’s announcements below are the most crucial in this matter:

  • Understanding Google’s March 2024 Core Update and New Spam Policies:
    A comprehensive guide for web creators, detailing the nuances of the latest changes and what they mean for online content.
  • Combatting Spam and Low-Quality Content in Search:
    Google’s strategy to enhance the quality of information on its search engine, ensuring users receive valuable and relevant content. Ian Nuttfall, a known figure within the SEO community, has contributed to this ongoing discussion with a groundbreaking study. His research unveils that 1.7% of the internet has been completely deindexed by Google, a drastic measure to preserve the integrity of its search results. Further scrutiny revealed a common denominator among these penalized sites: the utilization of AI-generated content.

This finding underscores a critical balance in the use of AI for content creation. While AI offers the potential for scalability and cost-cutting, its use within SEO strategies must be done with care to ensure the production of content that aligns with Google’s understanding and emphasis on quality and relevance.

As the digital landscape continues to evolve, these updates from Google serve as a navigational chart for creators and SEO specialists. The message is clear: the value and utility of content remain the most important in the quest for visibility and engagement on the internet. In this era of algorithmic accountability, the challenge for creators is not just to adapt but to do so responsibly, making sure the content they produce enriches the user experience and keeps up with the standards set forth by Google.

Quality Over Origin

Google’s position on AI-generated content has evolved significantly. With the recent algorithm updates in March 2024, it’s clear that Google does not necessarily penalize all AI-generated content. Google’s evaluation lies not in the origin of the content — whether it is created by AI or humans—but in its value and relevance to the user.

The widespread availability and adoption of AI content creation tools in recent months have led to a surge in the volume of content on the internet. This influx has not always translated to quality. A significant portion of AI-generated material has failed to meet the threshold for being considered valuable or qualitative, cluttering the web with low-quality content. Despite this trend, our company — and I personally — have not experienced negative impacts from Google’s latest updates. The reason is straightforward: our content, regardless of its source, maintains a high standard of quality and usefulness to our client’s target audience.

This phenomenon raises an interesting question: how does Google manage the use of AI in content creation, especially when distinguishing between AI and human-generated content can be challenging even for experts? Drawing from my experience as an information scientist with a background in search engine development, I aim to shed light on the mechanisms search engines like Google employ to identify and evaluate AI-generated content.

The Search Engine’s Mind

From what I can observe, Google has already developed sophisticated methods to analyze content at scale, employing advanced algorithms and machine learning techniques to assess the quality, relevance, and origin of web material. These systems are designed to detect patterns indicative of AI-generated content, such as unnatural phrasing, repetitive structures, or the lack of nuanced understanding that human-written content typically possesses. However, the focus is not merely on identifying AI-generated content but on evaluating its contribution to user experience.
  • Content Evaluation Metrics Google uses a variety of metrics to assess content quality, including user engagement signals like time spent on page, bounce rates, and pogo-sticking behavior (users quickly returning to search results). High-quality content tends to engage users more effectively, no matter of its AI origins.
  • Semantic Analysis Through semantic analysis, Google’s algorithms can understand the context and meaning of content, beyond mere keyword matching. This depth of analysis helps distinguish content that offers genuine value from that which simply occupies space.
  • Pattern Recognition Google’s algorithms are adept at recognizing the detailed differences between AI-generated and human-generated content. While the nuances are complex, patterns in sentence structure, coherence, and the depth of topic exploration play a crucial role.
  • Historical Data Google also considers the historical performance of a website’s content. A sudden spike in content volume without a corresponding increase in user engagement or quality raises red flags. Additionally, changes in writing style can be easily detected, as Google now employs AI to read and analyze content.

The Mechanics Behind Search Engines’ Evaluation of AI-Generated Content

Central to this process is the implementation of sophisticated vector-based models, designed to sift through and analyze the web’s expansive content. Here’s an insightful breakdown of how search engines like Google evaluate AI-generated content.

  1. Building the Foundation: The AI Content Database
    The initial step involves creating a comprehensive database of AI-generated content. This is achieved by employing AI to produce a wide variety of texts across numerous subjects that are commonly associated with low-quality or spammy sites. These subjects include finance, employment opportunities, health, and consumer products, among others. The goal is to amass a vast corpus of AI-generated material that serves as a reference for identifying similar patterns across the web.

  2. Pattern Recognition: The AI Content Pattern
    Upon the accumulation of this extensive AI-generated corpus, search engines deploy another layer of advanced AI algorithms. These algorithms carefully analyze the collected data to identify distinct patterns characteristic of AI-generated text from Large Language Models (LLMs). In Google’s case, they utilize Google Gemini as their LLM. The culmination of this analysis leads to the development of an AI detection model, once known as Text Generation Patterns, today known as AI-Detectors  — which are based on AI content patterns. Utilizing machine learning techniques, this model can precisely differentiate between content created by humans and that generated by AI, thereby enhancing the search engine’s capability to filter or rank websites based on the authenticity and innovation of their content.

  3. Scanning and Matching: The Evaluation Process
    With the AI Content Pattern established, search engines proceed to scan the content of websites indexed on the internet. This involves a detailed examination to determine the degree of match between a website’s content and the AI Content Pattern.
    Websites predominantly featuring AI-generated content often show a high degree of alignment with this pattern, with match rates sometimes exceeding 98%.

The Significance of Website History in AI Evaluations

The evolution of a website, from its initial launch to its current state, plays an important role in how search engines like Google assess and rank its content. Many site owners and SEO professionals may not fully appreciate the extent to which search engines keep track of a website’s historical data, including changes in its appearance, user engagement metrics, and content volume.

Search engines like Google meticulously monitor how a website develops over time. This involves analyzing the site’s growth trajectory from having only a handful of content pieces to potentially housing millions. Critical to this evaluation is the comparison of user engagement levels before and after significant content growth. Sites that experience a rapid increase in content volume often see corresponding shifts in key engagement metrics, such as Average Time Spent on the page and Bounce Rates — one particularly telling behavior is “Pogo Sticking,” where users quickly return to the search results after briefly visiting a website. This indicates that the content did not meet the user’s needs or expectations. A surge in such behavior, especially following a rapid growth of site content, signals to search engines that the quality and relevance of the site’s content have diminished.

A marked decline in user engagement, coupled with a swift increase in the quantity of content, alerts search engines to the potential decrease in content quality. This scenario often leads to the site being flagged, with the risk of being deindexed. It’s important to understand that the concern for search engines is not necessarily the origin of the content — be it AI-generated or otherwise written — but its ability to provide value and relevance to users.

Professionals like Ian Nuttfall, known for their expertise in analytics, have observed in their study that sites removed from the Google indexes mostly utilized AI for content creation.

Google’s Stance on AI-Generated Content

Google, among other search engines, has a clear position regarding AI-generated content. Such content is permissible, provided it enhances the user experience by being helpful and relevant. It’s a broader Google principle: the emphasis on quality user experience supersedes the technical origins of the content.

In short, AI or no AI, those that prioritize content quantity over quality risk Google penalization as of 2025.

Receive SEO Updates
About the Author
ABOUT THE AUTHOR Dr. William Sen CEO and founder of Blue Media

Dr. William Sen has been an SEO since 2001 and is a Software Engineer since 1996, and has been teaching as an Associate Professor for some of the world's biggest universities. William has studied International Business at the University of California, Berkeley and among others holds a PhD in Information Sciences. He has worked for brands such as Expedia, Pricewaterhouse Coopers, Bayer, Ford, T-Mobile and many more.

LEAVE A COMMENT:
Your comment will be published after being reviewed by moderators. Thank you

Latest Blog Posts